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GRAPHICAL PRESENTATION OF DIFFERENCE SOLUTIONS FOR TRANSIENT
RADIAL HEAT CONDUCTION IN HOLLOW CYLINDERS WITH HEAT
TRANSFER AT THE INNER RADIUS AND FINITE SLABS WITH
HEAT TRANSFER AT ONE BOUNDARY

By James E. Harca, Rarea L. Scaacat, Lynn U. ALBERs, and PauLn G. SAPER

SUMMARY

Nondimensional temperature distributions for
transient radial heat conduction through finite hollow
cylinders and one-dimensional heat conduction .in
slabs of finate thickness are presented wn graphical
form for a range of heat input. The solutions are for
radial heat conduction with heat transfer at the inner
radius or slab heat conduction with heat transfer at
one boundary. In both types of conduction it s
assumed that the boundary opposite the heat-transfer
surface is thermally insulated. The radial solutions
cover a range of dimensionless radius raitios. The
material is assumed to be homogeneous, and the phys-
1cal properties are considered invariant with tempera-
ture. It is required that the heat-transfer coefficient
and gas recovery temperature have quasi-steady-
state wvalues and the heat capacitance material
temperature be essentially uniform at the start of
heat addition. The solutions were obtained by means
of difference equations and may be used for cooling
as well as heating problems. These nondimensional
solutions eliminate the need for oblaining soluiions
Sor each different material, heat-transfer coefficient,
gas temperature, and initial material temperature.
The range of variables should be adequate to cover
rocket and missile calculations where a material is
utilized as a heat capacitor.

INTRODUCTION

To the authors’ knowledge, no solutions to the
equation for transient radial heat conduction in
a hollow cylinder with heat transfer at the inner
radius and thermal insulation at the outer radius
are available in the literature. Presumably this
is due to the extreme labor involved in obtaining

BN w

the closed-form solution in terms of Bessel func-
tions. It was felt that these answers would be
desirable for some types of rocket and missile
heat-transfer calculations. Also, considering the
accuracy of some of the assumptions often neces-
sary in this field, it was felt that solutions of the
difference equation would be sufficiently accurate
for many engineering purposes. All of the results
presented herein were obtained in a few days on
a high-speed digital computer.

The case of one-dimensional heat conduction in
a slab with heat transfer at one boundary and
thermal insulation on the opposite boundary has
been presented in the literature and may be found
in graphical form in references 1 to 3. Solutions
for this case were readily obtained on the comput-
ing machine by a slight modification of the differ-
ence equation for radial heat conduction and are
presented as additions to the other information.

The range of variables covered should be ade-
yuate for most rocket and missile applications
where a material may be used as a heat capacttor.

SYMBOLS

heat-flow area, sq ft

nondimensional parameter, AR2/2A7r

specific heat of material, Btu/(Ib)(°R)

nondimensional heat-transfer parame-
ter, hr,/k

convective heat-transfer
Btu/(hr) (sq £t) (°R)

thermal coefficient of conductivity of
material, Btu/(hr) (ft) (°R)

length of heat-flow path in slab, ft

factor for extending range of variables

1

LS

coeflicient,



N

number of Ar increments
number of AR increments
heat-flow rate/unit area, Btu/(br) (sq ft)
nondimensional radius, r/r,
radius, ft
temperature, °R
time, hr
nondimensional distance, z/z;
Y, 2 Cartesian coordinates, ft
coefficient of thermal diffusivity, k/pc,
sq ft/hr
circumferential measure, radians
material density, 1b/cu ft
nondimensional time, of/r? or aijr? as
applicable
@ nondimensional  temperature

(T—To)/(T¢— To)

RE MY e 3y

)

%%

ratio,

Subscripts:

e exterior (insulated surface) of material

g gas or adiabatic wall

) interior (heat-addition
material

n value of nondimensional temperature
at m=—r/Ar time increments

n value of nondimensional temperature
at n=(R—1)/AR or n=(X—1)/AX
distance increments from heat-
addition surface

0 value at start of heating (=0)

1 solution 1

2 solution 2

surface) of

SOLUTION OF EQUATIONS

The general form of the transient heat-
conduction equation with assumed constant mate-
rial property values (ref. 4) and no beat generation
may be written in vector notation as

_oT

~ot W

—V2
The final form of the equation depends upon the
type of coordinate system selected that is most
suitable to the physical situation.

SOLUTION OF RADIAL-HEAT-CONDUCTION EQUATION

The expression for equation (1) in cylindrical
coordinate system is

10T 0T

oT_ (¥T 19T 19T T
= rIoF 1 o
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where a is the coefficient of diffusivity (k/pc). In
many applications, for example in rocket work, it
may be sufficiently accurate to assume that heat
flows only in the radial direction. It might also
be a fair approximation to say that the material
temperature is uniform at the start of heat addition
and heat is added at the inner radius by a quasi-
steady-state heat-transfer coefficient and driving
temperature. In high-velocity flow the driving
temperature is usually considered to be the adi-
abatic wall or recovery temperature, which is
defined as the gas stream static temperature plus
the product of the recovery factor and the dynamic
temperature increase. With these assumptions,
equation (2) simplifies to

or_ (oT
ot X\

19T )
+o5 3)

with the boundary conditions,

qg= —kg—fzh T,—T) atr=r,

oT
> =0 at r=r,
T=T, at t=0 for all »

Equation (3) may be made nondimensional by
making a change of variables with the followinz
dimensionless parameters:

_ T—=T,7
=T —T,
1
r=1y (4)
and
r
R=r—1 J
The resulting equation is
bga b ¢, 10p
SEETR3R (5)

This equation can be considered as the formal
limit, as the increments AR=Ar/r; and Ar=
adt/r} tend to zero, of the difference equation

Pmt1.n Pm.n ‘Pm 41" 2¢mg}+¢m.n—-}_
Ar AR?

1_ (¢m.n+l
+5

Pm, n) + (¢m n
2AR

" Pm.n— 1)]
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where m is the number of Ar increments, and n is
the number of AR increments. The difference
equation may also be written as

AR? eidom o
2A7 @10, ) =22 EL 2¢ ==

m.n

+£§(¢m. nt1Pm, n—l) (6)

If a=AR?*2Ar and it is realized that R=R;}
nAR=1+4nAR, the solution for ¢ at r=(m+1)Ar
in terms of ¢ at r=mA7 is

__©Om, u+1+¢m.n—1 Lfl __l)¢
m.n

Pmt1.n— 5a } \ "

+4M1A+—Ifmm<¢m.u+x—¢m,,._l) )
where n ranges from 1 to n,— 12%__1
~a

The inner-radius boundary condition relevant
to the difference-equation formulation would be
of the form

Tos— T
My T ——k(( T Tme)

Using the nondimensional parameters of equation
(4) together with the additional nondimensional
heat-transfer parameter, H=hr/k, this equation
may be expressed as

_HAR"‘(PM,] (8)
POV HAR

The material is assumed to be insulated at the
exterior radius r,, and it may be assumed that the
heat that reaches the last increment of material
serves to raise the temperature of this increment.
Mathematically, this may be stated as

oT oT a 0T oT
_kA E—pCAAT ‘b—t‘ or —E' Ezgt—
Using the nondimensional parameters, the

exterior-radius boundary condition relevant to the
difference-equation formulation would be of the

form

1 1
¢m+l.nz=<1_%’ ¢m.ne+% Pm,n,—1 (9)

where R.=r/r,=14+nAR or n, =(R,—1)/AR and
a=AR?*2Ar.

The solution for the transient radial-heat-
conduction problem can be obtained by use of equa-
tions (7), (8), and (9) for any selected values of
nondimensional heat-transfer parameter H and
exterior to interior radius ratio R,=r,/r,.

Calculations were made on a high-speed digital
computer using the IPTAC coding system. This
system makes use of two-word floating point
arithmetic of over ten significant figures calcula-
tion accuracy with an average multiplication or
addition taking 1 millisecond. The interrupt
feature of the computer saves time on output of
results, so that a case with 30 increments in B and
5000 steps of integration required 25 minutes to
get 1100 numbers of output. Without the in-
terrupt feature, the punching of paper tape would
have required another 5 minutes. The longest
case computed for this presentation (80 incre-
ments in R, 10,000 steps in 7) required approxi-
mately 3 hours of calculation.

SOLUTION OF SLAB-HEAT-CONDUCTION EQUATION

In Cartesian coordinate system, equation (1)
can be expressed as
OF_ (37,37, 0T
ot \ox® ' o' 0z

If the heat is assumed to flow only in the
z-direction perpendicular to the heat-transfer
surface in a rectangular slab with all other surfaces
thermally insulated, this equation and the ap-
propriate boundary conditions may be stated as

oT T
q=—kg_—t]—1=h(Tg— T at x=zx,
oT
63:_ =0 at z=ux,
T=T, at £=0 for all

where z is measured from an arbitrary reference

point, z; units from the heat-transfer surface.
Equation (10) may be nondimensionalized by

changing variables with the following parameters:

_I-7
¢_T1_To
at

T = —

%



and
x=2

with the resulting equation
¢ 0%

or 0X?

This equation can be considered as the formal
limit, as the increments AX=2x/z; and Ar=caAl/z}
tend to zero, of the difference equation,

Ot = Pm, n+1+¢m n—1 +<1 —=)m.n (11)
where a=AX?/2Ar. Equation (11) is identical to
equation (7) with the last term on the right omitted.
Again, the values of n in equation (11) range from
(Ie/xi)_l _Xe_l

X 1= AT 1. Thebound
ary conditions at z; and z, are of identical form as
in the radial-heat-conduction case. Therefore,
appropriate nondimensionalized difference equa-
tions of the boundary conditions are

1to n.—1=

o= A ns (12)
and
1 1
¢m+1,ne:<l_2—a> ‘Pm,ne—'_z_a P, no—1 (13)

where X,—z./z,=1+n,AX or n,—(X,—1)/AX.

The solution for the transient slab-heat-
conduction problem can be obtained by use of
equations (11), (12), and (13). It may be noted
that equation (11) differs from equations (6) and
(7) in that X does not appear in the solution which
permits the use of z; as an arbitrary dimension
providing it is used in the determination of r, X,

and X,.

After solutions were obtained for the slab-heat-
flow problem, the results were converted to more
conventional parameters by the following equa-
tions:

al_ T
X1
s X—
L X—1
’;C—L=H(X,—1)
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where z is the distance in the direction of heat
flow from the heated surface in a slab of length
L, and where the temperature is computed at
time ¢.

Results for the slab-heat-conduction calcula-
tions were obtainable by omitting the last term
from equation (7) in the machine program for the
radial-heat-flow solution.

RANGE OF VARIABLES

A value of a=1.25=AR?*/2Ar was used for all
calculations. Reference 5 indicates that, for the
slab case, a=1 is required to guarantee stability
of the solution. Seven values of the nondimen-
sional heat-transfer coefficient H were used for
the radial-heat-conduction calculations. They
were 0.2, 0.5, 1.1, 2, 5, 10, and 20. Eight values
of the outside to the inside radius ratio R,=r,/r,
were used, but not all were used with every heat-
transfer value. The following table summarizes
the cases computed. The value listed is the
upper limit of the nondimensional time 7 com-
puted:

R. H
02|05 | 11 2 5 10 20

T
L1 o) oo o2 ]0.1)0.05 0. 05
1.2 | oo | oo oo | —ac .1 .05 .05
| P T N R [ R 1 .05 .05
1.4 5 5 0.1 (0.1 | .| ____ .
2.0 5 5 5 5 U (R -
2.5 5 5 5 5 e | - R
3.0 5 5 5 5 [P I R
4.0 5 5 5 5 U -

A study of the range of variables needed indi-
cated that the ones used would be adequate to
cover most rocket and missile work where a ma-
terial is utilized as a heat capacitor. The nondi-
mensional temperature parameter ¢ rises very
rapidly when small values of R, are used along
with high values of the heat-transfer parameter H.
Therefore, only a small range of = need be com-
puted before ¢ becomes very close to 1.0. Since
the region of interest is at the lower 7 for these
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cases, the computations were stopped at the
values indicated by the table.

Cases that ran to an upper limit of r equal to 5
used a AR interval of 0.05. To keep the compu-
tational details comparable, cases that ran to
upper limits of =0.1 and 0.05 used a AR interval
equal to 0.005.

Applications of these computations to large
rockets indicated that the heat-transfer parameter
H would be high and the value of the outside to
inside radius R, would:be:low or close to 1.0. If
equation (5) is examined for values of R, close to
unity, one sees that 1/R may be considered ap-
proximately equal to 1.0 for all values of B. Con-
sequently, the results of the case for R,=1.1 could
be extended to new cases by using the following
multiplying factor M:

H2=MH1
To=1,/M?
R.,—1
Re.2=1+ 1{4’

For minimum error, the extension should not be
attempted for cases where R, is higher than 1.1.
A check of the accuracy was made by extending
the computed values for H,=10 and R, ,=1.2 to
H,=20 and R,.=1.1 (i.e., M=2) and comparing
this with the calculated results for the second
case. This comparison is illustrated in figure 1.
The extension equations were considered to be
accurate enough that no solutions were carried
out, for H greater than 20 and R, less than 1.1.

RESULTS

Whenever a solution to a problem is obtained
by using a finite-difference equation, the accuracy
of the solution depends upon the size of the incre-
ments used and how accurately the approxima-
tions for the derivatives represent the true case.
As a qualitative check of the radial-heat-conduction
results, comparisons were made with closed-
form solutions presented in reference 6. These
solutions were made for the infinite material case;
therefore, the comparisons hold only for the period
of time when the outer boundary has experienced
no change in temperature.

Figure 2 shows the comparison between the
closed-form solution for infinite material and the
solution as obtained from equations (7), (8), and

9 1 1 .
S _ _
8 o -
| ﬁkc 3 Nondimensional time, T
I To —]0.0125
ol o
[Nt P 4 ] +—F 5=
e H=20,Rp=1.1 T oo
~ s o H=10, Re=|_2(converted to above
- 6 4
9: case b =j9i-"—2- =
g Y Tooua a2 Moot
© R -1
5 2 I+ 101.2 ) -
a 2
5 o
- ~1r.0025
T 4 <" 4.002
s 1~ |- +.0015
2 “ e 124 001
s -1.-1.77+ 10005
E 5 -
he] AN, 7
§ ’
¢ /
2+ > 4 ?\
$ M
R /.

050 o2z .08 106 108 L0

Nondimensional radius, #=r/r;
[ 4

Ficore 1.—Comparison of solution using multiplying
factors and solution using difference equations.

(9) for a nondimensional heat-transfer parameter
H equal to 0.2 and an outside to inside radius
ratio R, equal to 4.0. The solution should dupli-
cate the closed-form solution up to the nondimen-
sional time 7 equal to 0.6, because the outer
boundary (R=4.0) has experienced very little
change in temperature up to this value of = and
thus corresponds to the case for infinite material.
Since the results from reference 6 are given in
graphical form with a very rough grid and also
because the two cases are not quite comparable,
no quantitative judgment as to accuracy will be
made. The trends at this early time, for which
the solutions are least accurate, indicate that the
answers are sufficiently good for most engineering
purposes. Reference 7 gives the nondimensional
temperature distribution for the one-dimensional
heat-conduction case in a finite material in the
form of an infinite series. Using the first six
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T T L T 1
—— H=0.2,infinite materiat (ref.6)
o Finite-difference solution, Re =4.0

20— 41
R //
>
ol o .16 :
IS _
- ;‘“ J"/ /<
" / y/
9 [e]
- o
ST L/
o
5 7 /" |iso
: j g
° O
g 08 /7 ///
£ ‘3[/ 200
©
S
Z
04 B S,
oo //
( a00 | _——]
0 > 2 3

Nondimensional time, T

Ficure 2.—Comparison of closed-form solution for infinite
materiai and solution by difference equations for radial
heat flow.

terms of this seriesfor 2/L=0.2 and for the range
of 0.22hLj/k<6, the results from the finite-
difference equations agree within approximately 5
percent at a value of af/L?—=0.017, within approxi-
mately 1 percent at a value of of/L?=0.5, and
within approximately 0.2 percent at af/L?=1.0.
Since, in many cases, temperatures of the gas and
heat-transfer coeflicients cannot be determined
with accuracies greater than this, the increments
selected were considered to be small enough.
Also, material properties may vary appreciably
with temperature, so that any solutions to the
linear equations are in themselves approximations.
Further reduction of the material and time incre-
ments causes the machine time for calculations to
be greatly increased and poses machine storage
problems. '

RADIAL HEAT CONDUCTION

Plots of the nondimensional temperature ¢
against the nondimensional time 7 for values of
radius ratio R from 1.0 to R, are presented in
figure 3 for all the cases indicated in the preceding
table.

SLAB HEAT CONDUCTION

The calculations for the slab-heat-conduction
problems were carried out for the cases in the
preceding table, where the upper limit of r was
equal to 5.0, with X, replacing R, in the table.

Plots are presented in two ways for the slab-
heat-conduction solutions. Figure 4 presents plots
of ¢ against of/L? from z/L=0 to 1.0 for values
of RL[k equal to 0.2, 0.5, 1.1, 2.0, 4.0, and 6.0.
Figure 5 presents plots of ¢ against ALk for af/L?
from 0.0125 to 1.2 for values of z/L equal to 0,
0.2, 0.4, 0.6, 0.8, and 1.0.

SOME APPLICATIONS FOR THESE SOLUTIONS

Figure 4 gives the time-temperature relations
for any point in a slab of material (where the heat
flow is only in one direction) for various values of
the nondimensional heat-transfer parameter AL/Jk.
For example, if an insulated slab or constant-
diameter rod of known material and initial tem-
perature T, has heat applied to the uninsulated
end, and the time for the other end of the mate-
rial to reach a certain temperature is required,
this type of plot would be very useful. FEstimates
for the heat-transfer coeflicient A and the adia-
batic wall temperature 7, would first be made.
Then, knowing the material properties (« and k)
against temperature, the nondimensional parame-
ters g and AL/k could be computed. Entering the
correct plot (AL/k) with the value ¢ and z/L=1.0,
one can read a value of of/L? and finally compute
a value of time ¢. .

The graphs may be used for solving cooling as
well as heating problems.

The plots of ¢ against ALfk for various values
of z/L (fig. 5) can be used to find the heat-transfer
coefficient A. For example, a constant-diameter
rod of known material can be imbedded in a rocket
nozzle in such a way that heat flow is along the
axis of the rod with insulated sides and outer end.
A thermocouple can be used to give the time-
temperature relation for a given position in the
rod for a rocket firing run. The adiabatic wall
temperature 7, can be computed from rocket per-
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formance, and the initial temperature of the rod
T, is known from the thermocouple readings before
firing, enabling calculation of the nondimensional
temperature ¢. Then, knowing the material prop-
erties against temperature and the time of the
thermocouple reading, of/L* can be computed.
Entering the correct plot (x/L known) with values
of ¢ and «t/L?, one can read hL/k. Agsain, know-
ing the length (L) and material property (&), one
can compute the heat-transfer coefficient A.

The properties of materials (k, p, and ¢) may
vary appreciably with temperature, and the prob-
Jem arises concerning which temperature in the
material should be used in the evaluation. Refer-
ence 8 shows that the material properties for
simple metals for this type of computation should
be evaluated at a temperature that is about one-
fourth of the maximum if the initial temperature

is zero, or at (—Ti’lfz;%-% To) if the initial tem-

perature is nonzero. This may be due to the fact
that the temperature for evaluating properties
should be averaged for time and distance in the
material. The factor 4 appears to be a rough
approximation for this value.

An iteration process might be needed to get the
required accuracy if estimates used to start the
problem are found to be quite inaccurate. As an
illustration in the second example, the tempera-
ture of the rod at #/L=0 is needed to estimate the
material properties a and k. This value could be
approximated; and, once a value of AL/k is ob-
tained, one could enter the plot of ¢ against AL/k
for £/L=0, using the hL/k and ot/L? computed,
and see if the value of ¢ at £/L=0 gives a tem-
perature close to the original estimate. If not,
the process could be repeated until the desired
convergence is obtained.

In the design of a rocket nozzle where a mate-
rial is to be utilized as a heat capacitor, the appro-
priateradial heat-conduction solution (fig. 3) would
be applicable at each axial station. To give the
reader some feel for the nondimensional parame-
ters used, two cases will be computed.

In the following table are the assumptions used
and the calculated values-arrived at by use of
figures 3(a)(3) and 3(e)(4) for the throat of two
rockets of different size. It was assumed that the
wall material was graphite and it was necessary
to find the firing duration, which is limited by the

time required for the interior surface at the throat
to reach 3830° R.

Case 1 Case 11

Thrust, 1b 600, 000 6000
Adiabatic wall temperature, '

T, °R 6030 6030
Initial graphite temperature,

Ts, °R 530 530
Interior limiting temperature,

T, °R 3830 3830
Rocket chamber pressure,

1b/sq in. abs 300 300

Thrust coefficient 1. 347 1. 347
Rocket throal radius, r;, in. 21. 74 2.17
Exterior graphite radius at

throat, 7., in. 23. 91 4. 34
Material thickness, r,—r;, in. 2.17 2. 17
Heat-transfer coefficient, &,

Btu/(hr) (sq ft) (°R) 638 638
Graphite coefficient of dif-

fusivity, e, sq ft/hr 1.18 1. 18
Graphite thermal conduc-

tivity, k, Btu/(hr)(ft) (°R) 57.8 57. 8
H 20 2
R, 1.1 2
R (for limiting temperature) 1.0 1.0
¢ (limiting value) 0.6 0.6
T 0. 003 0. 45
Firing duration, ¢, sec 30 40. 5

No comparisons between cases I and II should
be drawn, because the local heat-transfer coeffi-
cient A is a function of the rocket radius, and these
cases were given only to illustrate the nondimen-
sional parameters.

By means of cross-plotting, curves of ¢ against
H with 7 as a parameter for fixed values of R and
R, can be made similar to the slab case for
evaluating h from experimental data from a
circumferentially and axially segmented rocket
nozzle or chamber.

CONCLUDING REMARKS

Nondimensional-temperature distributions for
transient radial heat conduction through hollow
cylinders and one-dimensional heat conduction
in slabs of finite thickness have been presented in
graphical form for a range of heat input. The
solutions are for radial heat flow with heat transfer
at the inner radius or slab heat flow with heat
transfer at one boundary. In both types of con-
duction it was assumed that the boundary opposite



8 TECHNICAL REPORT R—56—NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

the heat-transfer surface is thermally insulated.
The radial solutions cover a range of dimensionless
radius ratios. The material is assumed to be
homogeneous, and the physical properties are
considered invariable with temperature. The
solutions were obtained by means of difference
equations, and calculations were made on a high-
speed digital computer.

Some examples of uses for the curves might be as
follows for any type of material:

1. The temperature distribution through a slab
or hollow cylinder can be determined for known
heat-transfer coefficient and adiabatic wall tem-
perature.

2. Heat-transfer coeflficients can be obtained
from temperature measurements made at known
times.

3. Heat-addition duration may be determined
for given material thicknesses, heat-transfer co-
efficients, and limiting inner-wall temperatures.

4. Material thicknesses required for limiting
wall temperatures and heat-addition duration
may be obtained for known heat-transfer coeffi-
cients. This might be used in a weight analysis
where various materials are used.

5. The graphs may be used for solving cooling
as well as heating problems.

6. Thermal stresses arising during heating or
cooling could be obtained from the temperature
distribution through the material.

7. The solutions might be applicable to any
diffusion process other than heat diffusion that

satisfies the type of boundary conditions used
herein. .

Restrictions upon the use of these solutions
are that there be no heat flow at any boundary
except at the heat input surface, and the heat-
transfer coefficient and driving temperature have
quasi-steady-state values. The heat-capacitance
material temperature must be essentially uniform
at the start of heat addition.

Lewis REsgarca CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
CLeEVELAND, Onio, July 22, 1959
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